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FINITE AMPLITUDE WAVES IN FLUID-FILLED ELASTIC TUBES: 

WAVE DISTORTION, SHOCK WAVES, AND KOROTKOFF SOUNDS 

By Richard M. Beam 

Ames Research Center 

SUMMARY 

The Lagrangian form of the one-dimensional equations of motion for a 
fluid-filled elastic tube is developed. The resulting nonlinear equations are 
combined with a general nonlinear internal pressure cross-sectional area rela- 
tion for the tube to obtain the finite amplitude "wave equation." 
determination of the tube pressure-area relation which leads to a linear (non- 
distorting) wave equation, a solution for the general (distorting) wave equa- 
tion is presented. The solution for the general wave equation is applicable 
for simple (nonreflecting) waves in tubes with general pressure-area relations. 
The solution is then used to develop criteria for the steepening and 
nonsteepening of finite amplitude waves. 

After 

The theory is further developed to include the calculation of wave distor- 
tion. The criterion for a sharp wave is derived and the critical length of 
tube required for a sharp wave to develop is determined. The propagation of 
the resulting sharp wave or shock wave is considered. The velocity and the 
energy loss formulas for the shock wave are developed. 

Finally, the analysis and experimental results are used to support new 
hypotheses for the mechanism and source of the Korotkoff sounds which have a 
major role in the indirect determination of blood pressure. A limited amount 
of experimental data (from Bramwell) is presented to correlate quantitatively 
the analysis and the new hypotheses. 

INTROMJCTION 

The study of the dynamics of fluid-filled elastic tubes, or cylinders, 
has received extensive interest over the past two centuries. The greatest 
bulk of papers and books on the subject has appeared within the last 10 years 
in the fields of biomechanics' and aeromechanics (see the bibliography of 
ref. 2). Studies in aeromechanics are, in general, concerned with the inter- 
action of liquid propellants and their elastic containers while the studies in 
biomechanics are concerned with the interaction of blood and arteries or veins. 
Although the physical analogies in this report refer to biomechanics problems, 
the application of the theory is not restricted to one field. 

'An excellent historical and theoretical review including an extensive 
bibliography was given by Shalak in 1966, reference 1. 



For mathematical simplicity, most investigators have restricted their 
analyses to linear theory. The solutions to the nonlinear equations have been 
limited either to numerical integration utilizing the method of characteris- 
tics (ref. 3 )  or to the perturbation methods (ref. 1). 
of solution provide useful information, neither provides the general 
information available from a closed-form solution. 

Although both methods 

The purpose of this report is twofold; first, to present an analysis for 
the propagation of a simple (no reflection) wave of finite amplitude in a 
fluid-filled elastic tube. Of particular interest are the distortion of a 
smooth wave until a sharp wave develops and the propagation of the resulting 
shock wave. 
shock waves (refs. 1, 4, and 5) in fluid-filled elastic tubes, this is, to the 
knowledge of this author, the first presentation of a theory for the 
development and propagation of the shock waves. The experimental verification 
remains to be done. 

Although several writers have speculated on the development of 

The second purpose of this report is to present new hypotheses for the 
mechanism and source of the Korotkoff sounds which were the motivation for 
this study. The hypotheses concern the source of the Korotkoff sounds that 
occur when blood pressure is measured with a pressure cuff. Briefly, the 
mechanism hypothesis states that the sounds result from the development of a 
sharp, o r  possibly, a shock pulse wave in the compressed portion of the artery 
under the inflated cuff. The source hypothesis states that the source of the 
"sounds" is the response of the "listening" system to a sharp pressure wave. 

SYMBOLS 

internal cross-sectional area of tube 

equilibrium internal cross -sectional area of tube 

discrete values of cross-sectional area of tube on each side of 
shock wave 

wave velocity of finite amplitude nondistorting wilve 

spatial wave velocity as function of area A (the argument may be 
other than A) 

spatial velocity of shock wave 

shock-wave velocity in compressed coordinate system 

a constant (eq. (59)) 

energy loss coefficient for shock wave 

fbnction defined by equation (27) 



Pe 

P* 

P2 ,P1 

pressure cross-sectional area relation for tube 

pressure cross-sectional area relation for tube which leads 
to a linear wave equation 

function defined by equation (25) 

pressure spatial time relation for simple wave 

length of tube required for a sharp wave to develop at 
pressure p* 

minimum length of tube required for a sharp wave to develop 

pressure differential across tube wall 
(Subscripts i and o denote inside and outside tube 
P = Pi - PO.) 

differential pressure across tube w a l l  at equilibrium 
condition 
(Subscripts ie and oe denote inside and outside tube 

1 - Pressure Pe - Pie - Pee. 
pressure at which pressure gradient becomes infinite 

discrete pressures on each side of shock (p1 is also used as 
constant in eqs. (58) through (63)) 

time parameter 

discrete time at which pressure equals p* (eq. ( 5 2 ) )  

displacement of particle which had coordinate x at time 
t = O  

particle velocity (eq. (34) ) 

discrete particle velocities on each side of shock 

spatial coordinate ( fig . 1) 
spatial coordinate (fig. 3) 

dimensionless relation for tube cross-sectional area 
(es. (32))  

dimensionless relation for tube cross -sectional area 
(eq. ( 2 0 ) )  

discrete values of E on each side of shock 

3 
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c1 particle-to-particle propagation rate (eq. (36)) 

P fluid density 

w frequency constant 

( -1 dummy variable of integration 

I. LAGRANGIAN EQUATIONS OF MOTION 

Derivation of Equations of Motion for Large Displacements 

The purpose of this section is (1) to develop the large displacement equa- 
tions of motion (Lagrangian form) for a fluid-filled elastic tube, (2) to 
establish the conditions for a nondistorting propagating wave, and (3) to 
obtain the finite amplitude wave propagation properties. 
the mathematics and to emphasize the physical phenomena relevant to this 
report, some gross assumptions regarding the physical system have been made, 
namely: 

In order to simplify 

(a) The fluid is incompressible and inviscid. 

(b) The fluid flow is one-dimensional and the radial inertia is 
negligible. 

(c) The mass of the tube wall is negligible (i.e. , the kinetic energy of 
the w a l l  is small when compared to the kinetic energy of the fluid). 

(d) The flexural rigidity and prestress of the tube in the axial direc- 
tion do not affect the stiffness of the tube. This is equivalent to the 
assumption that each element along the length of the tube behaves as an 
isolated element disconnected from its neighbors. 

(e) Under equilibrium conditions the tube has uniform (not necessarily 
circular) cross section along the length of the tube. 
are also uniform along the tube. 

The elastic properties 

The validity of these assumptions in the analysis of Korotkoff sounds 
will be reviewed in section IV of this report. 

Euler (ref. 6) developed two forms for the equations of motion of a fluid. 
One considers the velocity, pressure, and density of all points in the space 
occupied by the fluid for all time, while the other considers the history of 
every element of the fluid for all time. The two forms are generally desig- 
nated as the Eulerian and Lagrangian forms, respectively. For most fluid flow 
problems, the Eulerian form is more tractable than the Lagrangian, and the 
Lagrangian form becomes quite awkward for two- and three-dimensional flow. 
For some special one-dimensional flows, however, the Lagrangian form has some 
advantages which will be evident in the following analysis. 

4 



Consider the equilibrium of an element of fluid which had original length 
8x. Let u(x,t) be the displacement of the particle which had coordinate x 
at time t = 0 (see fig. 1). The x coordinate system is then an inertial 

+ p a x  

Figure 1.- Coordinate system for development of Lagrangian equation. 

coordinate system along the axis of the tube. In addition, define 

A(x,t) cross-sectional area at time t of the fluid element which had 
coordinate x at t = O  (i.e., the cross-sectional area of the 
element at x + u) 

Ae 

p(x,t) pressure at time t in the fluid element which had coordinate x 
t = 0 (i.e., the pressure in the element at 

original (t = 0) cross-sectional area of the fluid element 

at x + u) 

P fluid density (a constant for incompressible fluid) 

The force on the left side of the deformed element is 

while the force on the right side is 

-p(x + Gx,t)A(x + 8x,t) (2) 

In addition, the forces acting on the sides of the element have an axial 
component 

The forces acting on the surfaces of the element (eqs. (l), (2), and (3)) must 
be offset by the inertial force of the accelerating element 

5 



Note that expressions (3) and (4) are only approximate for finite 
exact in the limit as 6x approaches zero. Equating the external forces to 
the inertial forces acting on the element one obtains 

6x but are 

( 5  1 
If the terms of equation (5) with argument x + 6x are expanded about x 

ap‘x’t) + O(dx2)] [,(,,t) -A(x,t) - ax 
2 ax 

where O(Sx2) represents terms involving terms of second and higher order in 
6x and, after terms of O(6x2) are regrouped, equation (6) may be written 

Since 6x may be taken as small as one chooses, in the 
equation (7) becomes 

limit as 6x + 0 

( 8 )  

In addition to equilibrium of the deformed element, the mass, or in this 
analysis (incompressible fluid) the volume, must be conserved. 
volume of the undeformed element to the volume of the deformed element 
produces 

Equating the 

[A(x,t) + A(x + 6x,t)l ( 9 )  6xAe = [EX + U(X + Ex,t) - u(x,t)I 2 

which is approximate for finite 6x but exact in the limit as 6x approaches 
zero. 

6 



After expansion of equation ( 9 ) ,  
the limit as 6x + 0 is 

I 
I 

Pie 

Poe 

Pe 

Ae 

P 

A 

pressure iside the tube when ub is in 
equilibrium with outside pressure poe 
and has inside cross-sectional area &. 

pressure outside the tube when tube is in 
equilibrium . 

differential pressure (pi - po) across the 
tube wall when tube is in equilibrium 
with internal cross-sectional area &. 

equilibrium internal cross-sectional area 
of tube. 

change in differential pressure across 
tube wall from pe (subscripts i and o 
refer to inside and outside tube). 

cross-sectional area of the tube wall 
corresponding to pressure p. 

Figure 2.- Pressure-area relation for typical 
elastic tube. Dashed axes indicate pressure- 
area relation applicable for perturbation 
about equilibrium conditions (pe,Ae). 

and substitution from the mass conserva- 
tion equation (10) into, the equilibrium 
equation (8) leads to an equation relat- 
ing the pressure and the displacement 

The preceding equations are inde- 
pendent of the properties of the tube 
w a l l .  The following analysis will be 
restricted to the special case where 
the internal cross-sectional area of 
the tube and the pressure difference 
across the tube w a l l  are related by a 
single-valued fwLction f, in particular 

P = f(A) 

The qualitative shape for a typi- 
cal elastic tube pressure-area curve is 
illustrated in figure 2. Note that p 
of figure 2 represents the differential 
pressure across the tube w a l l  but the 
p(x,t) in equations (1) through (11) is 
the pressure in the fluid. This appar- 
ent inconsistency in notation is recti- 
fied by letting the outside pressure 
change be zero (PO = constant) through- 
out the remaining analysis. Note also 
that the pressure-area curve depends on 
the initial cross-sectional area, A,, 
and pressure, Pea 

The pressure-area curve of fig- 
ure 2 includes the f u l l  range of cross-sectional area. With large negative 
values of 
external pressure is decreased (or internal pressure is increased) the area 
gradually increases until the pressure difference approaches the classical 
buckling pressure for the tube (ref. 7). 

pe (pie << pee) the tube is completely collapsed (A, = 0). As the 

In practice, the tubes do not 

7 
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2 exhibit  i n s t a b i l i t y  charac te r i s t ics  since they a r e  not perfect  cylinders. 
Rather, they exhibit  regions of  large change i n  area f o r  small changes i n  
pressure. A s  pe becomes posi t ive the cross sect ion of the  tube becomes 
qui te  c i rcu lar  and remains s o  u n t i l  the  pressure becomes su f f i c i en t ly  high a t  
which time the tube reaches an unstable equilibrium configuration. The pres- 
sures a t  which this l a t e r  type of i n s t a b i l i t y  occurs a r e  outside the range of 
i n t e re s t  of t h i s  report .  

With the pressure-area r e l a t ion  defined by equation (12) the derivation 
of the  equation f o r  
a flmction of A then 

u (x , t )  may be completed. Since the  pressure i s  known as 

but from di f fe ren t ia t ion  of both sides of equation (10) with respect t o  x 

ax 
(1 + $y 

or from (13) and (14) 

bp(x't) from equations (11) and (15) leads t o  3, Equation of 

Equation (16) i s  the general nonlinear wave equation fo r  large-amplitude waves 
and a general nonlinear tube pressure-area re la t ion .  
equation f o r  u ( x , t )  alone, A 

In  order t o  obtain an 
can be eliminated from equation (16) by 

- .  . .  .- - 

2Although the  collapse of an a r t e r y  d i f f e r s  from that o f  a rubber tube 
(see re f .  8),  the  e s sen t i a l  features of f igure 2 a r e  the same fo r  both. 

8 



substitution of A from equation (10). The resulting equation will, in 
general, be nonlinear (the complexity depending on the form of 
susceptible to analysis. 

ft(A)) but 

Condition for Nondistortion of Large-Amplitude Wave 

It will prove advantageous to eliminate the bracketed term in equa- 
tion (16) by substitution from equation (10) 

Note that equation (17) has the form of the linear wave equation if 

fi[A(x,t)]A3(x,t) = constant 

and that the corresponding wave velocity is C provided 

(18) 1 - f;[A(x,t)]A3(x,t) = C2 
AEP 

The required f(A), denoted f2(A), is found from equation (18), in the form, 

df 2(A) = C2pAe 2 d A  p 

theref ore 

f2(A) = C2pAZ (- &) + const 

The constant of integration is obtained from f~(Ae) = 0, therefore, 

f2(A) = 9 [l - ??)'I 
If the pressure-area relation has the particular form prescribed by equa- 

tion (l9), the linear wave equation will prevail and simple waves with finite 
amplitude will propaga-te without distortion and with velocity C. It is inter- 
esting to note that a longitudinally constrained rubber tube with circular 
cross section has precisely the pressure-area relation of equation ( 1 9 )  
(finite amplitude displacements with cross section remaining circular). 

The nondistortion of large-amplitude waves in rubber tubes with circular 
cross section was pointed out previously by Olsen and Shapiro (ref. 3). 
the Eulerian form of equations, they introduced the pressure-area curve for a 

Using 
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rubber tube ( c i r cu la r  cross sect ion) .  After developing the  equations f o r  t he  
charac te r i s t ic  curves, they considered a f i n i t e  amplitude wave t ravel ing i n  
one direct ion and with the  appropriate argument concluded that "every part of 
t he  wave moves with the  same speed and that the  wave nei ther  steepens or 
f l a t t ens .  
r e l a t ion  f o r  the  tube." 

This extraordinary r e s u l t  depends on the  par t icu lar  pressure-area 

The above analysis  (eqs. (17) through (19)) proves that the only form of 
pressure-area curve which yields  a l inear  wave equation (nondistorting waves) 
for  f i n i t e  amplitude waves i s  given by equation (19). 

F in i te  Amplitude Wave Distortion 

The primary concern of the present invest igat ion i s  the  d is tor t ion  of 
f i n i t e  amplitude waves as they propagate. 
equation of motion (eq. (16) ) .  

Return now t o  the general nonlinear 
-om equation (10) 

where 

then 

but 

therefore 

UA 

(1 + €)" 
f ' ( A )  = - f ' ( E )  Ae 

Substi tution of 
motion (16) leads t o  

f ' ( A )  from equation (22)  in to  the  general equation of 

- - a2u(x,t) 
a tz  

where E i s ,  of course, a function of x and t defined by equation (21) .  
Equation (23) could, of course, be writ ten 

10 
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1 

or, more generally, 

where 

Consider t he  propagation of a wave t o  the  r igh t  (x pos i t ive)  i n t o  t h e  
The solut ion must s a t i s f y  the  d i f f e r e n t i a l  equation (24) i n  undisturbed tube. 

addi t ion t o  the conditions of the  undisturbed tube ahead of t h e  wave, namely 

I n  accordance with t h e  development of Earnshaw (refs. 6 and 9), we seek 
solutions of t h e  form 

au = F (2) a t  
where F i s  a function t o  be determined. One may deduce from d i f f e ren t i a t ion  
of equation (27) 

Theref ore 

Equation (27) provides a solut ion t o  equation (24) i f  

11 



g a ,  ("> = [F' (&)I2 
(2) Therefore equation (29 )  is the equation f o r  

Integration of equation (29 )  leads t o  

or F(6).  

- 

However, if the integration is begun in the undisturbed region, one obtains 
from the conditions ( 2 6 )  and equation ( 2 7 )  

theref ore 

The particle velocity as a function of area can thus be obtained with the aid 
of equations ( 2 0 ) ,  (22), (251 ,  and ( 3 0 )  

L 1 or simply 

A compression wave (A > Ae) traveling to the right (x positive) produces 
positive particle velocity and a decompression wave (A < A,) traveling to the 
right produces negative particle velocity. The converse is true for waves 
traveling to the left (A > Ae, &/at < 0; A < Ae, aupt > 0); therefore the 
positive sign preceding the integral of equation (31) corresponds to waves 
traveling to the right and the negative sign corresponds to waves traveling to 
the left. 

For future reference in the evaluation of the wave distortion, it will be 
useful to introduce yet another parameter a defined as 

12 



a = 1 2 [l - (37 = - $ (2e + €2) 

Note t h a t  
t h e  pressure is  a l inear  function of a (i.e.,  i f  
The p a r t i c l e  ve loc i ty  as a function of 

a has been chosen such t h a t  t h e  l inear  wave equation prevai ls  i f  
f(a) - a, see eq. (19)) .  

i s  obtained from equations (30) , a 
(31), and (32) 

The s ign of t he  in t eg ra l  i s ,  i n  accordance with the discussion of 
equation (31), pos i t ive  f o r  waves t rave l ing  t o  the  r igh t  and negative fo r  
waves t rave l ing  t o  t h e  l e f t .  

The f i n a l  objective of  t h i s  sect ion i s  t o  evaluate t h e  s p a t i a l  ve loc i ty  
of propagation of a disturbance and the  d i s to r t ion  of t h e  disturbance. The 
procedure , w i l l  be t o  evaluate t h e  rate of propagation from p a r t i c l e  t o  p a r t i -  
c l e  and with t h i s  r e s u l t  t o  consider the  absolute ve loc i ty  of propagation, o r  
t h e  'wave velocity,  of t he  disturbance. 

Let v ( x , t )  denote the  p a r t i c l e  velocity,  t h a t  i s ,  

The veloc i ty  of a p a r t i c l e  a t  x a t  time t w i l l  be t h e  same as the  ve loc i ty  
of t he  p a r t i c l e  a t  x + 6x a t  time t -!- 8t, provided 

v ( x , t )  = v(x  + 6x, t + st )  

or 

but  from equations (27) and (34) 

therefor  e 

from equation (28) produces a2u 
at2 Subst i tut ion of - 



which i s  true f o r  a l l  values of x and t i f  

Therefore if t h e  r a t e  of propagation from p a r t i c l e  t o  p a r t i c l e  (E) 
veloc i ty  v is  denoted p, then 

u ( x , t )  H 
Let t h e  absolute locat ion 

p a r t i c l e  with ve loc i ty  v ( x , t )  
y (x , t )  ( see  f i g .  3 ) ,  that i s ,  

y (x , t )  = x + u(x , t )  

of t h e  

( 3 6 )  

of a 
be 

( 3 7 )  

then t h e  absolute locat ion of  a parti-  
1 c l e  with ve loc i ty -  v a t  time t + 6 t  

Figure 3.- Defini t ion of t h e  s p a t i a l  coordinate y . W i 1 1  be 

a Y  a Y  y(x + p s t ,  t + st) = y ( x , t )  + - ax P6t + - ax 6 t  

Thus the  absolute spatial ve loc i ty  of  p a r t i c l e  ve loc i ty  v (denoted Dy/Dt) i s  

Note t h a t  t h i s  represents t h e  propagation r a t e  of p a r t i c l e  ve loc i ty  -v 
opposed t o  t h e  propagation rate of a p a r t i c l e .  
t i ons  ( 3 6 )  and ( 3 7 )  reduces t h i s  t o  

as 
Subst i tut ion from equa- 

3 Dt = (1 + 2) [-F' (g)] + & 
o r  with the  a id  of equations ( 2 6 ) ,  ( 2 7 ) ,  (29), and ( 3 0 )  

14 



- DY D t  = T(1 + €)  4 l ' . j g ( )  d z  

Note t h a t  
a disturbance with ve loc i ty  v. Denoting t h i s  wave ve loc i ty  by c and subs t i -  
t u t ing  from equations (20) and (31), one obtains 

w/Dt may be  interpreted as the  "wave veloci ty"  of t h e  port ion of 

Not only does v propagate with ve loc i ty  c(A) but  s o  does A;3 therefore  
equation (40) is  the  r e l a t ion  required t o  calculate  t h e  d i s to r t ion  of a la rge-  
amplitude wave as it propagates in to  the  undisturbed tube. The only quant i t ies  
required a r e  (1) t h e  pressure-area curve f o r  the  tube 
of t he  f lu id ,  p,  (3) t h e  undisturbed cross-sectional a rea  of t h e  tube, A,, and 
( 4 )  the  spatial d i s t r ibu t ion  of t he  cross-sectional area (or pressure since 
there  i s  a one-to-one correspondence by equation (12) )  a t  some i n i t i a l  time 
to, A(x,to).  
l a t e r  section. 

f ( A ) ,  (2)  t h e  densi ty  

The ac tua l  calculat ion of t he  d i s to r t ion  w i l l  be considered i n  a 

Cr i t e r i a  f o r  Steepening 

Of primary concern i n  considerations which follow will be the  waves which 
steepen as they propagate. A steepening wave i s  defined as one i n  which t h e  
absolute value of t h e  slope (I&p/axl or laA/axl) for some value of  pressure, 

. .  . -  

3The derivat ion of t h e  propagation ve loc i ty  of A d i f f e r s  from that of 
v 
Instead of equation ( 3 5 ) ,  one obtains 

only i n  the  determination of the  par t ic le - to-par t ic le  propagation r a t e .  

and with equations ( 2 0 ) ,  (21), and (27) 

- -  6 X  
6 t  
_ -  - - -  

dX 

-F 1 (2) 
which i s  iden t i ca l  t o  equation (36). Since the  pressure p i s  assumed t o  
have a one-to-one correspondence with t h e  a rea  A, then t h e  function c(p)  can 
be  calculated from c(A). 



or cross-sectional area, increases as the wave propagates. 
wave propagates for a sufficiently long time a sharp wave (infinite slope) 
will develop (at least mathematically). 

If a steepening 

One could consider the steepening phenomenon by evaluating dc/dA, that 
is, from equation (40) 

However, equation (41) does not yield a simple set of criteria for steepening 
waves due to the complexity of the right-hand side of the equation. However, 
if c is written as a function of the parameter a (eq. (32)) one obtains 
with the aid of equations (33) and (39) 

Differentiation of c ( a )  in equation (42) produces 

Recall that the positive sign in equation (43) is applicable to waves 
traveling to the right (positive 
traveling to the left (negative 
right 

x) and the negative sign applicable to waves 
x). Therefore, for mves traveling to the 

- dc < o if f"(a) < o 
da 

Note also that for compressive waves 

Ae - decreases, a increases A 

and for decompression waves 

increases, a decreases Ae - 
A 

16 
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The c r i t e r i a  f o r  steepening waves may now be s t a t ed  i n  terms of t h e  
pressure as a function of t he  parameter a. The most usef'ul c r i t e r i a  are 
probably t h e  ones i n  terms of a p lo t  p(a)  . 

If one p lo t s  t h e  curve 
ing waves may be s t a t ed  as: 

p [ l  - (AJA)"] or p(a) ,  t h e  c r i t e r i a  f o r  steepen- 

(a) Compression waves w i l l  steepen f o r  ranges of p i n  which the  slope 
of t h e  p(a)  curve i s  increasing (f"(a) > 0) .  
otherwise. 

Conversely, they w i l l  f l a t t e n  

(b)  Decompression waves w i l l  steepen for  ranges of p i n  which t h e  slope 
of t h e  p(a)  curve i s  decreasing (f"(a) < 0 ) .  
otherwise. 

Conversely, they w i l l  f l a t t en  

( c )  Compression and decompression waves w i l l  propagate undistorted f o r  
ranges of p i n  which the  slope of t he  p(a)  curve i s  constant (f"(a) = 0) .  

The last  of the  c r i t e r i a  i s  i n  accordance with t h e  condition of nondis- 
t o r t i n g  waves (eq. (19) ) .  
c r i t e r i a  f o r  steepening a r e  s t a t ed  en t i r e ly  i n  terms of a function r e l a t ing  
the.pressure t o  t h e  area of t he  tube. 

It seems appropriate t o  reemphasize that the  

11. CALCXLATION OF WAVE DISTORTION 

General Equation of Distortion 

The purpose of t h i s  sect ion i s  t o  es tab l i sh  the  formulas f o r  calculating 
the  d i s to r t ion  of a large-amplitude wave propagating i n t o  an undisturbed tube. 
I n  addition, la ter  pa r t s  of t h i s  section w i l l  be devoted t o  determining t h e  
c r i t e r i a  f o r  a sharp wave ( i n f i n i t e  slope) and the c r i t i c a l  distance required 
fo r  a sharp wave t o  develop. Finally,  an example calculat ion w i l l  be presented 
t o  demonstrate an appl icat ion of the  theory. 

Section I provides the  theory necessary t o  determine t h e  s p a t i a l  wave 
ve loc i ty  as a function of t he  pressure ( o r  area)  amplitude. 
i s  denoted by 
that the  pressure, p, may be  expressed as a M c t i o n  of 

If t h i s  quant i ty  
c (p ) ,  then it follows from the  discussion of t he  f irst  sect ion 

t - [x/c(p)],  namely 

p(x , t )  = h It - 
C(P) 

(47) 

where c(p)  i s  a known function. Equation (47) i s  appl icable  t o  a wave 
t rave l ing  t o  t h e  r i g h t  (pos i t ive  x ) .  



Sharp-Wave Cri ter ion 

The pressure gradient w i l l  become inf ini te  when 

Evaluating from equation (47) yie lds  

but  

therefore ,  

or, solving for  &/ax, 

(49) 

The f'unction 
namely, x = 0, so  that 
concerned with the  t r ans i t i on  from 'lsmooth'l waves t o  sharp waves, h ( t )  i s  
assumed t o  be  continuous and ah ( t ) / a t  (or 
The pressure gradient &(x,t)/ax becomes i n f i n i t e  i f  

h [ t  - x/c(p)] i s  assumed t o  be known f o r  some tube posit ion,  
h ( t )  i s  a prescribed fbnction. Since t h i s  study i s  

h ' ( t ) )  i s  assumed t o  be f i n i t e .  

The c r i t e r ion  for a sharp wave t o  develop (eq.  ( 5 0 ) )  depends on (a)  the  pre- 
scribed form of the  pressure, h ( t ) ,  (b) t h e  wave ve loc i ty  pressure curve, 
c (p ) ,  and ( e )  t he  locat ion on the  tube, x .  
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Cr i t i ca l  Length 

A s  the  pressure wave passes some posi t ion x = LC along the  tube, the  
slope of the  wave &(L,t)/ax w i l l  be i n f i n i t e  fo r  pressure l e v e l  p* i f  
(from eq. (50)) 

Note tha t  to is the time a t  which p(Lc,t) = p* which i s  (from eq. (47) )  

P*(LC, tO>  = h [to - L] c(p*) 

or 

t o  = ___ Lc + h-'[p*] 
C(P*)  

where h - l  denotes the  inverse function and should not be confused with h ' ,  
which denotes a der ivat ive with respect t o  the  argument of the function, nor 
with the negative one power. The denominator of equation (51) can be t rans-  
formed by subst i tut ion from equation ( 5 2 )  t o  obtain 

Differentiation of  both sides of equation (47) with respect t o  t yields 

The r igh t  side of equation ( 5 3 ) ,  h'[h-'(p*) 1 ,  i s  the  value of 
fo r  the value of the  argument a t  which 
equation (54) by choosing 
f o r  p = p* thus 

h' evaluated 
h = p*. This may be evaluated from 

x = 0 and evaluating the  r igh t  side of the  equation 

(55) 



The distance along the tube, Lcj or the  " c r i t i c a l  length" a t  which the  
p = p* i s  (from eqs. (51), slope of the  wave, $/ax, becomes i n f i n i t e  a t  

(531, and ( 5 5 ) )  

Thus 
and the pressure-time curve a t  

Lc(p*) can be calculated i f  the  wave ve loc i ty  pressure function, c (p) ,  
x = 0, h ( t ) ,  a r e  prescribed. 

Since the c r i t i c a l  length depends on the  pressure amplitude p*, one must 

This l a t t e r  quantity may be obtained more formally by taking the deriva- 
examine each amplitude of pressure t o  obtain the "minimum c r i t i c a l  length" 
Lcm. 
t i v e  of Lc(p*) and equating the  r e s u l t  t o  zero, t h a t  i s ,  

One must, of course, assure himself t ha t  the  r e s u l t  i s  a minimum and not a 
maximum. In  addition, obtaining a minimum from equation (57 )  does not insure 
that  the  minimum value of LC has been obtained (because of the f i n i t e  range 
of p*). In  f ac t ,  it i s  not necessary f o r  a minimum ( f r o m  the calculus) value 
of Le t o  ex i s t  i n  the  allowable range of p*. However, there i s  always a 
value of Lcm. 

I l l u s t r a t i v e  Example 

The application of the  formulas f o r  c r i t i c a l  length and m i n i m  c r i t i c a l  
length i s  bes t  i l l u s t r a t e d  'by an example calculation. 
pressure-time curve a t  

Let the prescribed 
x = 0 be 

h ( t )  = p1 s i n  w t  ( 5 8 )  

and the  prescribed wave velocity-pressure curve be 

Figure 4.- Pressure-time and pressure-wave velocity 
functions for illustrative example. 
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where pl ,  W, and c1 a re  con- 
s t an t s  and the fhnctions h ( t )  
and c(p) a re  shown graphically 
i n  f igure 4. 
i s  a se r i e s  of compression and 
decompression waves. A s  the 
wave propagates along the tube, 

The t ravel ing wave 



the  compression waves sharpen while 
the decompression waves become l e s s  
steep s o  that a t  some time tl the  
wave has the  shape shown i n  f i g -  
ure 5 .  The pressure i n  the  tube i s  

p(x , t )  = p1 sin w 

The computation of the c r i t i c a l  
length Lc(p*) requires the evalua- 

t i on  ( 5 8 ) ,  

Figure 5.- S p a t i a l  d i s t o r t i o n  of pressure wave 

for i l l u s t r a t i v e  example. t i on  of ah/atlh=p*. *om equa- 

- -  ah - p1w cos a t  
at 

and the  time a t  which h = p* i s  

Theref ore 

o r  simply 

where the choice of C sign depends on the posit ion on the  function h ( t )  
and, therefore? the posit ion on the  wave. 

The numerator term i n  the calculation of Lc(p*) is ,  from equations ( 5 6 )  

Substi tution 
equation yields 

from equations (61) and (62) i n to  the c r i t i c a l  length 
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o r  

I n  order t o  obtain the m i n i m u m  c r i t i c a l  distance,  d i f f e r e n t i a t e  t h e  r i g h t  s ide  
of equation (63) with respect t o  p* and equate t h e  result t o  zero 

thus a r e l a t i v e  minimum or maximum of the  -&ion L,(p*) occurs when 

but  t h e  range of i n t e r e s t  of p*/pl i s  -1 s p*/pl I: 1. Therefore, t h e  
minimum of i n t e r e s t  i s  when 

or from equation (63) 

L,, = 2 0.686 

The negative pressure i s  a d i f f e r e n t i a l  pressure i n  the  previous re la t ions .  
The absolute pressure must, of course, be pos i t ive .  The computation of t h e  
minimum length of tube required f o r  t he  development of a s teep  wave i s  
extremely simple f o r  t he  example problem. 
preva i l  f o r  t h e  more general  problem ( i . e . ,  more complex 
funct ions) ,  a numerical calculat ion should always be p rac t i ca l .  

Although t h i s  s implici ty  w i l l  not 
c(p)  and h ( t )  

111. SHOCK WAVES 

The formulas, developed f o r  calculating the  length of tube required fo r  a 
sharp wave (ap/ax = C O ) ,  s t r i c t l y  speaking, do not apply i n  t h e  l i m i t  
(&/ax = OJ) but  should be applied only as 
when ap/ax = co t he  p a r t i c l e  accelerat ion a l s o  becomes i n f i n i t e .  Also, fo r  

ap/ax approaches in f in i ty ,  f o r  
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very sharp pressure gradients the axial bending rigidity of the tube wall 
should be included in the analy~is.~ 

The final transition from the nearly sharp to a truly sharp wave presents 
a formidable mathematical problem. 
once the transition phase has been completed, can be treated quite simply 
provided one again assumes that the axial bending rigidity of the tube is 
negligible. 

However, the propagation of a sharp wave, 

Associated with the sharp waves are discontinuities in the particle veloc- 
ity and pressure and (except for the linear wave equation) energy losses. 
the remainder of this report the sharp waves will be called "shock waves." 

For 

Shock-Wave Velocity 

Consider the propagation of a compression shock wave through a fluid- 

the particle velocity (A, p, and v, 
respectively) be distinguished by sub - 
scripts 1 and 2 referring to the right 
and left side of the shock wave, respec- 
tively. The spatial velocity of the 
shock wave is denoted by cs .  Conserva- I 

I 
I A I ,  P I ,  V I  tion of fluid mass across the shock 

front requires that I 
I 

filled elastic tube (fig. 6). Let the cross-section area, the pressure, and 

I- cs 

1 
A 2  1 P 2  8 v2 

I 
I 

A useful parameter in further computations is which is defined as 
the shock-wave velocity in the compressed ( or lengthened) coordinate system. 
The relation of cs to may be written 

where €1 = Ae/A1 - 1 (see eq. (20)). Or if one had chosen to write the rela- 
the shock tion in terms of the left side of 

- 
- 

*The axial bending r gidity n the development of a shock requires fur- 
ther investigation. This effect may or  may not be important. Certainly, how- 
ever, it would be more attractive from the physical viewpoint if the tube wall 
displacement discontinuity were eliminated. Indeed it is not certain that a 
shock wave will develop if the bending rigidity is included. 
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Note t h a t  cs of equations (66) and (67) must be  equal, therefore  

which is  equivalent t o  equation ( 6 5 ) .  

Besides mass, the  momentum of t h e  f l u i d  must a l s o  be conserved. The 
impulse of t h e  forces on t h e  f l u i d  ac t ing  along the  tube i s  

which must equal t h e  change of momentum of the  f l u i d  

theref  ore 

Elimination of  cs and v2 
and (68) produces 

from equation (69) with t h e  a id  of equations (66) 

or 

Integrat ion by 
s implif ies  t he  

pa r t s  of t he  numerator of t h e  right-hand s ide of equation (70) 
expression for cg 

and the  shock wave ve loc i ty  i n  the  undeformed coordinate system i s  (from 
eqs. (66) and (71))  
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The velocity of the shock wave can be determined if the pressure-area 
curve of the tube, the conditions ahead of the shock (Al, vi), and the 
amplitude of the shock A2 - A1 (or p2 - p1) are prescribed. 

The next step is to estimate the shock-wave velocity in terms of the 
small-amplitude wave velocities of disturbances at the foot (A = Al) or peak 
(A = A2) of the original wave (fig. 7). This is accomplished by introducing 

’ 5  I 

I 

X X 
Smooth wave Shock wave 

Figure 7.- The pressure as a function of a for use in shock-wave description. 



t h e  a notation (eq. (32) )  i n t o  equation (71) 

or from equation (72) 

The equations derived thus far i n  t h i s  sect ion a r e  va l id  f o r  in f in i tes imal  as 
wel l  as f i n i t e  wave amplitudes. The wave ve loc i ty  of t h e  foot of t he  wave 
which developed i n t o  t h e  shock wave w a s  (from eq. (74 ) ) ,  taking the  l i m i t  as 
a2 -+ a1, 

and t h e  ve loc i ty  a t  t h e  peak of t h e  or ig ina l  wave5 was 

Note t h a t  i f  df/da i s  pos i t ive  and d2f/da2 i s  pos i t ive  for a1 s- CL 5 a2 

( i . e . ,  d f ( a l ) /da  < df(a2)/da) as i n  f igure  7 (which i s  t h e  c r i t e r ion  f o r  sharp 
waves, sect ion I),  then from equations (74),  (75) and (76) 

The ve loc i ty  of t h e  developed shock wave i s  grea te r  than the  ve loc i ty  of  t he  
foot of t he  or ig ina l  wave bu t  l e s s  than t h e  ve loc i ty  of t he  peak of t he  
or ig ina l  wave. 
wave, see section I) then 

In  the l imi t ing  case i n  which df/da = constant (nondistorting 

.. . .  .. - - 

'S t r ic t ly  speaking, t h e  "original" wave i s  a smooth wave with amplitude 
equal t o  the  amplitude of t h e  shock wave. 
smooth wave w i l l  develop a shock wave of equal amplitude. 

It has not been proved t h a t  t he  
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EYlergy Loss 

Since the  shock-wave ve loc i ty  i s  determinable from considerations of 
conservation of mass and momentum, the  energy l o s s  across the  shock can be 
calculated d i r ec t ly .  

The external  work rate on t h e  f l u i d  i s  

the  rate of change of k ine t i c  energy of the  f l u i d  is  

t h e  rate of change i n  po ten t i a l  energy of the  tube i s  

and the  energy los s  rate i s  defined as 

Equating the  work r a t e  t o  t h e  energy change r a t e  yields  

If v2 and cs 
and (72) then, a f t e r  considerable manipulation of terms, one obtains 

a r e  eliminated f rom equation (83) with the  a i d  of equations (65) 

Thus the  energy l o s s  coef f ic ien t  can be calculated i f  t he  conditions 
ahead of the  shock wave, t he  amplitude of t h e  shock wave 
p2 - p l ) ,  and the  pressure-area curve f o r  t h e  tube a r e  known. 

A 2  - A 1  (or 

The case considered here i s  one of a pa r t i cu la r  c lass  of shocks which 
require  only the  mechanical shock conditions ( r e f .  10) f o r  t he  determination 
of t he  shock. The energy los s  i s  generally a t t r i bu ted  t o  t h e  generation of an 
equivalent amount of heat.  
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IV. KOROTKOFF SOUNDS 

Sphygmomanometry 

Although blood pressure can be measured d i r e c t l y  by inser t ing  pressure 
measuring devices i n t o  t h e  a r t e r i e s  o r  veins, ind i rec t  methods of measurement 
have been devised which provide l e s s  discomfort to t h e  patient,  eliminate t h e  
r i s k  of infect ion,  and provide grea te r  convenience t o  the  medical pract i t ioner .  

Several ind i rec t  methods (ref.  11) have been devised and used success- 
fu l ly ;  however, one method, sphygmomanometry, has come to be accepted as a 
standard i n  the  medical f i e l d .  Fortunately, t h e  method i s  simpler than i t s  
name and i s  f a m i l i a r  to almost everyone as part of a physical examination. 
The d e t a i l s  of t h e  method may not be so  familiar t o  those outside the  medical 
profession and, a t  t h e  risk of being superfluous, w i l l  be presented. 

The required equipment consis ts  of a compression cuff, an in f l a t ion  bulb 
with pressure control  valve, and a mercury manometer o r  other pressure measur- 
ing device. When the  cuff i s  snugly applied t o  t he  arm jus t  above the  elbow 
( f i g .  8) ,  i n f l a t ion  of t h e  cuff with the  bulb compresses the  t i s sues  which i n  

sphygmomanometer 

sphygmomanometry 

Figure 8.- The method of sphygmomanometry. 

t u rn  compress the  brachia l  a r te ry .  The pressure i n  the  cuff i s  increased 
u n t i l  no pulse wave can be f e l t  i n  t he  a r t e r y  downstream from the  cuff.  

A stethoscope i s  positioned ju s t  downstream from t h e  pressure cuff and 
the  pressure i n  the  cuff i s  slowly reduced by t h e  pressure control valve. A s  
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the cuff pressure decreases, certain distinctive sounds may be heard until the 
cuff pressure is reduced to a sufficiently low level at which the sounds disap- 
pear. The sounds are called Korotkoff sounds and the pressures indicated on 
the manometer (cuff pressures) at which the sounds appear and disappear are 
generally accepted as a measure of maximum blood pressure (systolic) and 
minimum blood pressure (diastolic) in the brachial artery. 

Direct and Indirect Method Correlation 

The simplest and most common correlation of the sounds and the actual 
pressure pulse is shown graphically in figure 8. This correlation assumes 
that the highest pressure at which sounds first occur corresponds to the maxi- 
mum value of the pulse pressure and that the lowest pressure at which sounds 
disappear corresponds to the minimum value of the actual pulse pressure. 

Several medical researchers have attempted to establish the validity of 
the indirect method by comparison with blood pressure measurements obtained 
from intra-arterial pressure transducers (refs. 12-15). Although the degree 
of correlation varies between investigations (the medical history of the sub - 
jects varies also), it is not unusual to obtain discrepancies between the two 
methods as great as 20 percent. There are, of course, cases when the indirect 
method produces zero diastolic readings - a grave condition if the method were 
correct. 

It seems unreasonable to expect that the discrepancies between the two 
methods will be understood until the conditions required for the generation of 
the Korotkoff sounds and the source of the sounds are known. 

Various Hypotheses 

Hypotheses explaining the Korotkoff sounds have been plentiful.6 
attempt will be made to be all inclusive but four of the more popular 
hypotheses from the literature will be briefly reviewed. 

No 

Wate-r hammer.- Ear ly  in his investigation of blood pressure estimation by 
indirect methods, Erlanger (ref. 17) (1916) came to the conclusion that the 
main mechanism of Korotkoff sounds is as follows: 

"Under compressions which permit the pulse to determine relatively 
wide excursions of the arterial wall in the compression chamber, 
that is, under compressing pressures ranging from systolic arterial 
pressure to, and even a variable distance below, diastolic pressure, 
the volume of the compressed artery increases abruptly with each 
pulse. This permits a considerable volume of blood to enter the 
opening artery with a high velocity. The motion of this column of 
blood is, however, suddenly checked where it comes into contact 
with the stationary, or practically stationary, column of blood 
filling the uncompressed artery below. The water hammer that is 

'The introductions to references 16 and 8 provide historical reviews. 
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thus set  i n t o  play distends the  a r t e r i a l  w a l l  a t  t h e  point of impact 
with unusual violence. This d i s ten t ion  sets t h e  a r t e r i a l  w a l l  i n t o  
vibrat ion and t h e  sound i s  produced." 

After fu r the r  experiments, however, Erlanger ( r e f .  18) changed h i s  
opinion and supported t h e  hypothesis of B r a m w e l l .  

"Breaker" phenomenon. - While working i n  Erlanger 's laboratory, Bramwell 
(refs. 19 and 20) (1923) experimentally studied t h e  change i n  t h e  form of the  
pulse wave i n  the  course of transmission. He correlated t h e  propagation of 
t h e  pulse wave with the  propagation of ocean waves toward a beach and 
concluded tha t  f o r  the  pulse wave: 

"Hence, the  more rap id ly  moving elements w i l l  tend t o  catch up 
t o  those which are moving more slowly; i n  other words the  wave w i l l  
tend t o  become more ve r t i ca l ,  and, under su i t ab le  conditions, parts 
of it may ac tua l ly  tend t o  topple over and form 'breakers. '  
the  wave as a whole does not 'break,' any individual portion of it 
which does s o  w i l l  set up i r regular  vibrat ions i n  the  a r t e r i e s ,  
which, i f  they be of su f f i c i en t  amplitude, w i l l  be transmitted t o  
t h e  periphery . . . . ' I  

Even i f  

Later Bramwell re la ted  the  "breaker" t o  t he  sound production i n  a r t e r i e s  
and spec i f i ca l ly  t o  t he  Korotkoff sounds. 

Bernoulli e f f ec t .  - Rodbard ( ref .  21) experimentally studied the  flow of 
f l u i d  through col lapsible  tubes. 
Bernoulli  or flow ve loc i ty  pressure e f f e c t )  and the  f l e x i b i l i t y  of t he  tube, 
he w a s  able  t o  produce i n s t a b i l i t i e s  and vibrat ions of t he  f l u i d - f i l l e d  tube. 
He termed t h i s  phenomenon " f l i t t e r "  and one of h i s  conclusions w a s  

Due t o  the coupling of the  flow (through the  

"The Korotkoff murmurs heard when a r t e r i e s  a r e  compressed during the  
measurement of blood pressure a r e  probably a l s o  due t o  f l i t t e r  of 
t he  w a l l s  . . . .I1 

It should be noted that t h e  " f l i t t e r "  of which Rodbard speaks requires  
r e l a t i v e l y  high f l o w  ve loc i t ies  and it i s  known t h a t  t he  Korotkoff sounds can 
be reproduced with zero mean flow ( r e f .  22). 

Dynamic i n s t a b i l i t y . -  Anliker and Raman formulated a hypothesis f o r  t he  
Korotkoff sounds a t  d i a s to l e  ( r e f .  16) and Raman l a t e r  extended t h e  hypothesis 
t o  include systole  ( ref .  23). The hypotheses in t e rp re t  t h e  sounds as "a phe- 
nomenon of dynamic i n s t a b i l i t y  ( osc i l la t ions  with increasing amplitude), the  
i n s t a b i l i t y  being induced by the  appl icat ion of a pressure cuff ."  
explain t h e i r  hypothesis as follows: 

They 

"Like any other sound perceived by a human ear,  t he  Korotkoff 
sounds heard with the  a id  of the stethoscope are aggregates of vibra-  
t ions  whose frequencies and in t ens i ty  place them within the  audibi l -  
i t y  range. It i s  conceivable t h a t  the  Korotkoff sounds are due t o  
disturbances in t h e  f l o w  that a r e  induced loca l ly ,  t h a t  i s ,  in the  
segment of the  brachia l  a r t e r y  which i s  compressed by the  cuff .  



However, it is also possible that they 
ciated with pulsative flow through the 
selectively amplified to a level above 

are a part of the noise asso- 
circulatory system that is 
the audibility threshold in 

the compressed-section of the brachial. It is well known that pul- 
sating flow through the complex system of blood vessels generates a 
multitude of wave motions; the associated vibrations are not audible 
because their amplitudes and in many cases their frequencies are far 
below the audibility threshold. Irrespective of the origin of the 
disturbances leading to Korotkoff sounds, it will be shown that the 
application of a pressure cuff can change the system locally from 
one that is dynamically stable to one that is intermittently unsta- 
ble and thus capable of mechanically amplifying certain low 
intensity vibrations (disturbances) to such an extent that they 
become audible . . . ." 
Theoretical work to support the hypotheses is practically nonexistent 

except for that of Anliker and R a m .  They have done the linear analysis for 
a fluid-filled circular cylinder (simulating diastole) and Raman did a similar 
analysis for systole except that the shell geometry was changed to simulate 
the "flattened" artery. Their analyses do not provide a means of computing 
the frequencies or amplitudes of the sounds (which are assumed to be amplifica- 
tions of disturbances already present) but establishes the differential 
pressure for instability of the system (buckling of shell) and amplification 
of the disturbances. 

Bramwell and Hill (ref. 19) did make some calculations of the distortion 
of the arterial pulse wave assuming that the small displacement wave velocity 
of the pulse wave was known. Their calculations were, however, incorrect 
because they, in effect, included only one term of the right side of equa- 
tion (40). In particular, they used only the small displacement velocity 
(measured) which corresponds to 

They have therefore neglected the term 

or the "integrated particle velocity. 

Applicability of Present Theory 

The intent of this section is to investigate the f'undamental physical 
phenomena associated with the production of Korotkoff sounds. Parameters that 
influence the character of the sounds, but are nonessential for production of 
the sounds, will be neglected. This is done to isolate the physical features 
essential to the production of the sounds. Future analysis should provide a 



method for determining the effect of those parameters which influence but are 
not essential to the production of the sounds. 

The applicability of the analysis of sections I through I11 to the inves- 
tigation of the Korotkoff sounds depends on the ability of the mathematical 
model to represent the important properties of the physical system which 
produces the sounds. 
demonstrated that: 

This analysis will be applicable if it can be 

(1) The phenomenon of Korotkoff sounds can be simulated by pulsatile flow 
in a compressed isolated artery (that is, an artery detached from its 
surrounding tissue but still intact at its ends), and 

(2) The assumptions of section I are applicable in formulating the 
mathematical model for the pulsatile flow. 

The validity of the first condition has been demonstrated in experiments 
on anesthetized dogs by Erlanger (ref. 24) and in experiments on simulated 
arteries by Sacks et al. (ref. 25). The results of these experiments demon- 
strate that the Korotkoff sounds occur without the surrounding tissue. This 
should not be taken to imply that the surrounding tissue will not change the 
quality of the sounds. 
simulated artery, have shown that simulated tissue surrounding the artery 
muffled the sounds. The quality of the sounds is affected by the tissue but 
the tissue is not essential to produce the sounds. 

Anliker and Raman (ref. 16), in their experiments on a 

The second condition to applying the analysis will be satisfied by 
considering each assumption of section I explicitly. 

(a) The effect of compressibility of the blood in the study of pulsatile 
The effect of vis- flow in the arteries has been shown to be small (ref. 1). 

cosity on the Korotkoff sound phenomenon was considered experimentally by 
Sacks et al. (ref. 26). They concluded that the effects of viscosity are rela- 
tively small since it was demonstrated that Korotkoff sounds could be produced 
over a range of viscosities from 1 to 30 cm2/sec. 
blood is of the order 5 “/see. 

The kinematic viscosity of 

(b) The assumption of one-dimensional flow and the neglection of radial 
inertia have been shown to be reasonable approximations as a result of 
experiments performed by the author to supplement the available experimental 
data. These experiments are discussed below. 

In the author’s experiments the simulated artery was either a gum rubber 
tube (1-inch diameter and 1/16-inch wall thickness) or a transparent flexible 
plastic tube of similar dimensions. 
water-glycerin mixture (90-percent water, 10-percent glycerin) . 
flow was provided by a positive displacement pump (fig. 9). 
zero in accordance with the findings of Sacks et al. (ref. 25) that the mean 
flow effect was negligible. 
provided by decreasing the mean internal pressure and thus allowing the 
atmospheric pressure to provide the cuff pressure. 

The fluid was either pure water or a 
The pulsatile 

The mean flow was 

The compression (simulated cuff) of the tube was 

This method of compressing 
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Reservoir system (closed) 

1-2' =I- 
Rigid tube reducer and 

on rigid base 2" diam piston driven 
sinusoidally with Scotch 

yoke 

Figure 9.- Diagram of test fixture for author's experiments. 

7 the  tube eliminates any influence a mechanical cuff may have on the  sounds. 
I n  addition, t h i s  method allows almost unlimited access t o  t h e  tube f o r  
instrumentation. 

Flow visua l iza t ion  experiments were performed using t h e  c lear  p l a s t i c  
tube and a solut ion of water (90 percent) and glycer in  (10 percent) of t he  
appropriate densi ty  t o  suspend small p l a s t i c  beads (approximately 0.05-inch 
diameter). 
of  t he  tube the  mean pressure d i f f e r e n t i a l  across t h e  tube w a l l  was adjusted 
t o  produce sounds a t  the  stethoscope location. High-speed motion pictures  
were then taken of t he  area surrounding the  stethoscope s o  t h a t  t he  tube and 
f lu id  motion could be studied i n  d e t a i l .  The pictures  showed t h a t  t h e  veloc- 
i t y  of t he  suspended pa r t i c l e s  and thus the  ve loc i ty  of t h e  f lu id  w a s  uniform 
across the  cross sect ion of t h e  tube. I n  addition, t he  maximum l a t e r a l  motion 
of  t h e  pa r t i c l e s  was about 7 percent of t he  longi tudinal  motion. On the  bas i s  
of these observations the  assumptions of a one-dimensional f l o w  and negl igible  
energy associated with t h e  l a t e r a l  motion a re  ju s t i f i ed .  

With the  pump providing a sinusoidal displacement input a t  the  end 

( c )  Since t h e  densi ty  of t he  tube w a l l  i s  approximately the  same as the  
densi ty  of t h e  f lu id ,  the  mass of t he  tube can be neglected fo r  t he  same 
reason the l a t e r a l  i n e r t i a  of t h e  f l u i d  can be neglected. 

(a)  Although pres t ress  of t he  tube i n  the  a x i a l  d i rec t ion  a f f ec t s  the  
qua l i t y  of t h e  Korotkoff sounds ( r e f .  18), pres t ress  i s  not e s sen t i a l  t o  t he  
production of sounds. This w a s  demonstrated experimentally by Bramwell and 
confirmed by t h e  author i n  h i s  experiments. 

The f l exura l  r i g i d i t y  i n  t h e  a x i a l  d i rec t ion  of t he  tube has no e f f ec t  
for long wave lengths ( r e f .  3) but  the  e f f ec t  must be accounted fo r  as the  
pressure gradient becomes sharp. 
which t h e  f l exura l  r i g i d i t y  must be included requires  fur ther  invest igat ion.  
The j u s t i f i c a t i o n  f o r  omitting a x i a l  f l exura l  r i g i d i t y  i n  t h e  present 

The t r ans i t i on  region (pressure gradient)  a t  

- - . -  ~ _ _  
7The "cuff" i n  the  author 's  experiments w a s  ac tua l ly  t h e  same length as 

t h e  e l a s t i c  tube (approximately 50 f e e t ) .  
however, determined by t h e  loca t ion  of t he  stethoscope. If t h e  pulse wave 
form w e r e  measured a t  s t a t i o n  x1 and t h e  stethoscope were located a t  s t a t i o n  
x2 (downstream from 

The rreffect iverf  cuff length w a s ,  

XI) then t h e  e f fec t ive  length of t h e  cuff w a s  x2 - XI. 
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investigation of Korotkoff sounds is based on the good quantitative agreement 
of the author's analysis and the experimental data of Bramwell (presented in a 
later paragraph) . 

(e) The assumption of uniformity of the tube under equilibrium conditions 
is certainly justified for the simulated artery experiments. The application 
to the brachial artery is validated by the work of Tickner and Sacks who made 
extensive measurements on excised brachial and other arteries (ref. 27). 

Hypothesis for Mechanism 

The present hypothesis for the Korotkoff sounds is divided into two parts. 
The first considers the development of necessary conditions (mechanism) for 
the production of sounds and the second part considers the sounds. The 
proposed mechanism should already be apparent f r o m  the development of 
sections I through 111. The hypothesis is: 

As the pulse wave traverses the compressed portion of the 
artery, it may, with favorable system parameters, steepen and, in 
fact, become sharp (possibly a shock wave). 
include (1) the shape of the arterial pulse as it enters the com- 
pressed section of the cuff, (2) the physical properties of the tube 
wall, (3) the cuff pressure, and (4) the length of the cuff. The 
development of a shock wave is not essential to the production of 
sounds but the wave must become relatively steep (see the sound 
hypothesis). 

The system parameters 

It should be noted that the cuff pressure could be zero and the other 
parameters favorable to produce steep waves. This could account for the zero 
diastolic reading sometimes obtained in practice. 

This hypothesis does not differ significantly from that of Bramwell 

The major contri- 
except for the final stage of the steepening wave which is assumed here to be 
a shock wave rather than the less probable "breaking wave." 
butions to this hypothesis are (i) the theoretical support of sections I to 
I11 which make the hypothesis both plausible and useful, and (ii) the 
explanation for the developed sharp wave. 

The Sounds 

The mechanism hypothesis offers no explanation for the sounds heard 
through the stethoscope. Generally, one associates sound with oscillatory 
pressures. However, no oscillatory components of pressure are predicted by 
the analysis and in the author's experiments sounds could be obtained when the 
displacement of the tube wall contained no oscillatory components. High-speed 
motion pictures (2000 frames per second) and tube wall displacement trans- 
ducers revealed only the sharply rising and slowly decaying wall displacement 
as each "pulse" wave passed. In addition, the flow visualization studies 
showed no turbulence in the flow when the sounds were heard or during any 
other part of the cycle. This last observation is in agreement with the 
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Figure 10.- Typical pulse wave and simulated Korotkoff 
soitnds. Upper trace is pressure recorded from 
pressure transducer inside tube under stethoscope 
(see fig. 11). Lower trace is signal from microphone 
mounted inside stethoscope earpiece. Time base 
0.2 sec per division. 

turbulence studies of Anliker 
and Raman (ref. 16) who used 
dye for flow visualization. 
Measurements from pressure 
transducers inside the tube 
(fig. 10) showed no oscilla- 
tory pressure components, only 
the rapid pressure rise as the 
"pulse" wave passed the 
transducer. 

The author's experimental 
results and the analysis indi- 
cate that the predominant 
source ofthe sounds is the 
sharp pressure gradient. In 
order to determine if this 
done were a plausible explana- 
tion, a series of additional 
experiments were conducted. 

The signal from a pres- 
sure transducer inside the 
tube and flush with the inner 

wall of the tube was used as the "driving" signal for an audio amplifier 
speaker system (fig. 11). A stethoscope was placed on the tube wall directly 
over the pressure transducer. The sounds produced by the speaker system were 
then compared with those obtained by listening through the stethoscope. The 
comparison of sounds by the human ear is at best qualitative; however, the 
sounds fromthe speaker and those from the Stethoscope were essentially but 
not indistinguishably the same. In order to insure that the speaker sounds 
were not affected by artifacts of the pulse pressure wave which were not 
observed on an oscilloscope display, a function generator was used to simulate 
the pressure transducer waveform. The function chosen was a ramp with the 
slope appoximating the pulse gressure gradient. 
function generator was introduced into the speaker system the sounds were 
indistinguishable from those obtained when the pulse pressure signal was used. 
It was concluded that the sharp pulse wave alone could account for the 
predominant sounds. 

When this signal from the 

'h  stethoscope 
Pressure 

transducer 

Figure 11.- Relative location of stethoscope and pressure transducer. 

As noted above, the sounds from the stethoscope were "essentially" but 
not "indistinguishably" the same as those from the speaker. 
stethoscope has resonant frequencies ( "organ pipe" frequencies) that result 

Since a 

35 



f r o m  the tubing connecting the head of the stethoscope to the earpiece, it was 
decided to investigate the possibility that the "differencef1 of sounds could 
be due to the stethoscope resonances. 
length of tubing connecting the stethoscope head- and earpiece. The variation 
of sounds as a function of tube length was observed by two methods - listening 
through the earpiece and using a microphone inside the earpiece so that the 
sound pressure waveforms could be observed on an oscilloscope (fig. 12). 
oscilloscope traces showed the expected trend of increasing frequency in 
pressure fluctuations as the stethoscope tube length was decreased. The 
sounds appeared to become correspondingly "sharper" as the length of 

This study was made by varying the 

The 

(a)  11 f e e t  of tubing.  

(b) 5.5 f e e t  of tubing.  

Figure 12 . -  Typical pu lse  wave and simulated Korotkoff sounds for various lengths  of tubing connecting 
Stethoscope head- and earpiece.  Upper t r a c e  is  pressure recorded from pressure transducer i n s i d e  
tube under stethoscope ( s e e  f i g .  11). 
stethoscope tubing. 

Lower t r a c e  i s  s i g n a l  from microphone mounted ins ide  
T ime  base 0 . 1  sec per  d iv is ion .  
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( c )  2 feet ( s tandard)  of tubing. 

(d) 0.4 feet of tubing. 

Figure 1 2 . -  Concluded. 

stethoscope tubing was decreased and more closely approximated the speaker 
system sounds (from the pressure pulse wave). 
differences in the sounds from the stethoscope and the audio system (with 
pulse wave as input) were accounted for by the characteristics (resonances) of 
the stethoscope. 

The author concluded that the 
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The range of frequencies' of the  Korotkoff sounds reported i n  t h e  l i tera-  

During t h e  development of 
ture i s  qui te  varied and includes the  threshold of hearing (approximately 
20 cps) t o  about 500 cps ( r e f s .  8, 22, 30, and 31). 
an automatic blood pressure monitoring system f o r  the Mercury manned space 
f l i g h t s  ( r e f .  29) it was discovered t h a t  t he  microphone s igna l  containing t h e  
Korotkoff sounds could be f i l t e r e d  with negl igible  loss  of accuracy i n  blood 
pressure determination. 
were set s o  t h a t  only components between 32 and 40 cps w e r e  passed, t he  ind i -  
r e c t  blood pressure determination was es sen t i a l ly  t h e  same as i f  t he  unfi l -  
te red  s igna l  were used. T h i s  r e s u l t  implies e i t h e r  t h a t  t h e  predominant 
o sc i l l a to ry  components of t h e  sounds were i n  t h e  frequency band of t he  f i l t e r  
(32 t o  40 cps) or that t h e  microphone f i l t e r  was not " f i l t e r ing"  the  sounds 
but  w a s  "responding" t o  a sharp input. I n  l i g h t  of t h e  previous discussion 
the  lat ter explanation seemed more plausible  t o  t h e  author and a t e s t  w a s  
conducted t o  v e r i f y  t h i s  suspicion. 

It was determined t h a t  i f  t h e  frequency band pass 

The pressure transducer s igna l  was  f i l t e r e d  by a band-pass f i l t e r  and 
then introduced i n t o  t h e  audio speaker system. 
and after f i l t e r i n g  was monitored on an oscilloscope ( f i g .  13).  
that the  f i l t e r  changed the  input waveform from a sharp r ise  and slow decay t o  
a momentary decayed osc i l l a t ion .  
qua l i t y  changed s o  t h a t  they did not seem as "sharp1' as the  unf i l te red  sounds. 
The frequency of the  f i l t e r e d  s igna l  w a s  that of t h e  f i l t e r  (about 36 cps when 
the bandwidth w a s  32 t o  40 cps). 
decay w a s  due t o  t h e  response of t h e  f i l t e r  (and not t h e  frequency components 

The pressure waveform before 
It wsts found 

The sounds were not eliminated but  t h e i r  

In  order t o  confirm that the  osc i l l a to ry  

(a) 12-16 cps bad-pass  f i l t e r .  

Figure 13.- Typical pulse  wave and pulse wave a f t e r  narrow band f i l t e r i n g .  Upper t r a c e  i s  
pressure recorded from pressure transducer ins ide  tube.  Lower t r a c e  is same s igna l  a f t e r  
narrow band f i l t e r i n g .  Time base 0.2 sec per d iv is ion .  

_ -  _ _ _ _ . . . ~  . _ _ ~  . ... .- ._ ~~~. . . .  

8The frequencies referred t o  a r e  those of t he  osc i l l a to ry  components of  
t he  Korotkoff sounds when displayed on an oscilloscope o r  other recording 
device ( r e f .  28, fo r  example) and should not be conf'used with the  Fourier 
components of a pulse wave type record as reported by Ware ( r e f .  29). 
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(b) 22-26 cps band-pass f i l t e r .  

( c )  32-36 cps band-pass f i l t e r .  

Figure 13.- Concluded. 
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of the  Korotkoff sounds) a square wave function generator w a s  used i n  place of 
the  pulse pressure. 
burs t s  of decayed osc i l la t ions  with frequencies of the f i l t e r  "center" 
frequency ( f i g .  14) .  

The f i l t e r e d  response once again was a ser ies  of short  

(a) E-16 cps band-pass filter. 

(b) 22-26 cps band-pass filter. 

Figure 14.- Square wave and narrow band-pass filtered square wave. Time base 0.2 sec per 
division. 
after narrow band-pass filtering. 

Upper trace is square wave from function generator. Lower trace is same signal 
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( c )  32-36 cps band-pass f i l t e r .  

Figure 14. - Concluded. 

Much work remains to be done to confirm that all the sounds observed in 
sphygmomanometry are due to the phenomenon of the sharp wave. 
believes that the preliminary experiments and analysis presented in this 
report offer sufficient evidence for proposing a hypothesis for the sounds. 
This is, of course, only a hypothesis that must be evaluated by further 
investigation both analytical and experimental. 

The author 

Hypothesis for Sounds 

On the basis of the analysis for the mechanism of the Korotkoff sounds 
presented previously and experiments by the author, it is concluded that: 

The Korotkoff sounds are the response of the measuring system to 
a steep (possibly sharp or shock) wave input; that is, the frequency 
components of the sounds are characteristic of the measuring system 
and are not characteristic of the dynamics of the blood-filled 
artery. 
of the properties of the blood-filled artery, but the dependence is 
only on the sharpness of the pulse (which depends on the properties 
listed in the mechanism hypothesis) which excites the measuring 
system. 

This does not mean that the sounds produced are independent 

The term "measuring system" means the ear alone or the aided 
ear (i.e., with a stethoscope, or some microphone speaker system). 
Sounds, by definition, require the ear as part of the sound 
measuring system. 

This hypothesis implies that the "frequencies" of the blood artery system 
cannot be obtained directly from the frequency spectral analysis of the sounds. 
In fact, those frequencies obtained f r o m  such.analyses reflect the inherent 
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frequencies of t he  measuring system. This could account f o r  t h e  wide 
var ia t ion  of "frequenciest '  for t h e  Korotkoff sounds reported in the  literature. 

Experimental Corroboration 

Although Erlanger and Bramwell had meager ana ly t i ca l  support of t h e i r  
hypothesis, they  did extensive experimental work. A summary of t h e i r  work on 
mechanical (as opposed to biological)  systems was given by Bramwell ( ref .  32) 
as follows: 

"Sounds produ_ced by waves i n  closed tubes.  How i s  it t h a t  t h e  

To answer that question I must f irst  r e f e r  
def la t ion  of t h e  armlet causes the  changes in t h e  arterial  sounds 
described by Korotkoff? 
t o  some experimental observations made on an a r t i f i c i a l  schema of 
t h e  c i rcu la t ion .  "his consisted of t h e  inner tube of a bicycle  t y r e  
containing f l u i d  but  no air .  The d i s t a l  end of t h e  tube w a s  closed 
by a wooden bung and the  proximal end connected with a pump capable 
of generating waves in t h e  f lu id .  
t he  arterial  t r e e  and t h e  pump the  hear t .  Erlanger (1924) found 
t h a t  a wave passing along a rubber tube f i l l e d  with water produced 
a sound which varied both i n  qua l i t y  and i n  in t ens i ty  a t  d i f f e ren t  
points along the  tube. The change in qua l i ty  of t h e  sounds, as 
heard with a stethoscope, enables one t o  map out th ree  regions i n  
the  tube. 

The tyre  represented a portion of 

(1) I n  the  proximal region, only a d u l l  thud i s  heard; t h i s  
becomes louder as one passes f a r the r  down t h e  tube. 

( 2 )  I n  the  intermediate region, t h e  sound i s  very loud; here it 
i s  no longer d u l l  but  sharp l i k e  the  crack of a whip. 

(3)  I n  the  d i s t a l  region, t he  sound loses  i t s  cracking character 
and becomes progressively f a i n t e r  as we pass towards the  d i s t a l  end 
of the tube. 

"Erlanger pointed out that, in t h e  intermediate region of t he  
tube where t h e  loud crack i s  heard, t h e  w a l l  of t h e  tube i s  subject 
t o  a severe shock. This he demonstrated by spr inkl ing f ine  sand on 
the  upper surface of t h e  tube. With t h e  passage of a wave the  sand 
i s  v io len t ly  thrown off from t h a t  region i n  t h e  tube where the  shock 
i s  most severe and where the  loud cracking i s  heard on auscultation, 
but  l i e s  undisturbed i n  the  segments on e i t h e r  s ide.  

"Working i n  Erlanger's laboratory i n  1923, I made some fur ther  
observations on t h i s  phenomenon (Bramwell 1937). I found t ha t  t he  
posi t ion of t he  disturbed area - i . e . ,  t he  a rea  i n  which the  sand i s  
thrown off the  tube - varied with the  pressure of t he  f lu id  i n  the  
tube. A s  one r a i s e s  the  pressure, t he  disturbed area  recedes from 
the  proximal towards the  d i s t a l  end of t he  tube, a t  high pressures 
the  wave passes down the  whole length of t h e  tube without producing 
suf f ic ien t  disturbance t o  throw off t he  sand. I n  other words, t he  
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higher the  ini t ia l  pressure, the  fa r ther  has the  wave t o  t r a v e l  
before the  conditions a r i s e  which lead t o  the  throwing off of sand 
and the  production of sharp cracking sounds." 

Bramwell presented suf f ic ien t  d e t a i l  of h i s  experiments ( r e f .  20) fo r  a 
comparison with the  theory of section 11. 
Bramwel l  introduced the  pressure wave sham i n  f igure 15. 
d i r e c t l y t h e  wave veloci ty  pressure curve from the d i s to r t ion  of the  wave. 
The r e s u l t  i s  sham i n  figure 16. 

Using mercury as the  f lu id ,  
H e  determined 

The calculation of t he  c r i t i c a l  length of tube (eq. ( > 6 ) )  is  par t icu lar ly  
simple fo r  the  given pulse wave (almost l i nea r  in i ts  r i s e )  and the  minimum 

I c r i t i c a l  length is  a l s o  eas i ly  obtained (at  mini" c2/(dc/dp)). If it is  
now assumed t h a t  the  minimum c r i t i c a l  length corresponds t o  the  "disturbed 
area" determined experimentally by Bramwell, a comparison of theory and experi- 
ment is  i n  order. Because of apparatus r e s t r i c t ions ,  Bramwell could determine 
only bounds on the "disturbed area" and these a r e  sham as v e r t i c a l  l i nes  i n  
f igure 17. The calculated minimum c r i t i c a l  length i s  shown as a sol id  l i ne .  

Figure 15.- Experimental input pulse wave (Bramwell data). The pressure is the differential 
pressure across the tube wall. 
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Figure 16. - Experimental pressure-wave velocity curve (Bramwell data). The pressure is the 
differential pressure across the tube w a l l .  
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Figure 17.- Comparison of experimental (Bramwell) and theoretical (this report) determination of 
critical tube length. The pressure is the differential pressure across the tube w a l l .  

The r e su l t s  of the ana ly t ica l  and experimental work presented i n  t h i s  
report  can bes t  be summarized by a se r i e s  of conclusive statements. 

1. A solution fo r  the f i n i t e  amplitude wave equation with general tube 
pressure-area r e l a t ion  can be obtained fo r  simple (nonreflecting) waves. 

2. The f i n i t e  amplitude nonlinear wave equation reduces t o  the  l i nea r  
wave equation when the pressure-area r e l a t ion  f o r  a longitudinally constrained 
rubber tube with c i rcu lar  cross section i s  introduced. 

3 .  The s e t  of c r i t e r i a  for wave d i s to r t ion  (steepening or nonsteepening) 
can be s ta ted  as a function of the  pressure-area r e l a t ion  of the  tube. 
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4. The distortion of waves and the corresponding critical length of tube 
can be calculated if the initial shape of the wave (entering the tube) and the 
pressure-area (or wave velocity-pressure) relation of the tube are known. 

5. The development of shock waves in fluid-filled elastic tubes is theo- 
retically feasible ( f r o m  the simplified theory). 
energy loss are readily obtainable if the amplitude of the wave and the 
pressure-area relation for the tube are known. 

The shock-wave velocity and 

6 .  The analysis in this report supports the wave distortion hypothesis 
and experimental work of Erlanger and Bramwell. 

Statements 7, 8, and 9 are based on new hypotheses presented in this report. 
These hypotheses have not been proven but are supported by the analysis and 
experiments discussed in this report. 

7. The development of steep waves produces sharp waves or possibly shock 
waves and not "breakers" as hypothesized by Bramwell. 

8. In the indirect method of blood pressure measurement (sphygmomanome- 
try) the cuff pressures at which Korotkoff sounds are heard correspond to 
artery conditions suitable for the pulse wave to steepen sufficiently to 
excite a response in the measuring system. 

9. The frequency components of the Korotkoff sounds are characteristic 
of the measuring system (stethoscope or other) and not characteristic of the 
blood-filled artery. More precisely, the pressure variation inside the artery 
is very nearly a step (with possibly a "blip" or two) while the pressure varia- 
tions to which the ear is exposed (through a stethoscope or otherwise) contain 
oscillatory components of the measuring system response (to the steep wave). 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, May 27, 1968 
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